On coloring problems with local constraints

نویسندگان

  • Flavia Bonomo
  • Yuri Faenza
  • Gianpaolo Oriolo
چکیده

We show complexity results for some generalizations of the graph coloring problem on two classes of perfect graphs, namely clique trees and unit interval graphs. We deal with the μ-coloring problem (upper bounds for the color on each vertex), the precoloring extension problem (a subset of vertices colored beforehand), and a problem generalizing both of them, the (γ, μ)-coloring problem (lower and upper bounds for the color on each vertex). We characterize the complexity of all those problems on clique trees of different heights, providing polytime algorithms for the cases that are easy. These results have two interesting corollaries: first, one can observe on clique trees of different heights the increasing complexity of the chain k-coloring, μ-coloring, (γ, μ)-coloring, list-coloring. Second, clique trees of height 2 are the first known example of a class of graphs where μ-coloring is polynomial time solvable and precoloring extension is NP-complete, thus being at the same time the first example where μ-coloring is polynomially solvable and (γ, μ)-coloring is NP-complete. Last, we show that the μ-coloring problem on unit interval graphs is NP-complete. These results answer three questions from [3].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reinforcement learning based local search for grouping problems: A case study on graph coloring

Grouping problems aim to partition a set of items into multiple mutually disjoint subsets according to some specific criterion and constraints. Grouping problems cover a large class of important combinatorial optimization problems that are generally computationally difficult. In this paper, we propose a general solution approach for grouping problems, i.e., reinforcement learning based local se...

متن کامل

On the complexity of distributed graph coloring with local minimality constraints

Distributed Greedy Coloring is an interesting and intuitive variation of the standard Coloring problem. Given an order among the colors, a coloring is said to be greedy if there does not exist a vertex for which its associated color can be replaced by a color of lower position in the fixed order without violating the property that neighbouring vertices must receive different colors. We consider...

متن کامل

Agent Compromises in Distributed Problem Solving

ERA is a multi-agent oriented method for solving constraint satisfaction problems [5]. In this method, agents make decisions based on the information obtained from their environments in the process of solving a problem. Each agent has three basic behaviors: least-move, better-move, and random-move. The random-move is the unique behavior that may help the multi-agent system escape from a local m...

متن کامل

Solving Problems with Hard and Soft Constraints Using a Stochastic Algorithm for MAX-SAT

Stochastic local search is an effective technique for solving certain classes of large, hard propositional satisfiability problems, including propositional encodings of problems such as circuit synthesis and graph coloring (Selman, Levesque, and Mitchell 1992; Selman, Kautz, and Cohen 1994). Many problems of interest to AI and operations research cannot be conveniently encoded as simple satisfi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electronic Notes in Discrete Mathematics

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2009